COMMENTARY

Open Access

The Scientific Dimensions of Infant Mortality Rate: Probing Factors

Ana Speranza*

Department of Health Sciences, University of York, York, UK

About the Study

Infant Mortality Rate (IMR), defined as the number of deaths of infants under one year of age per 1,000 live births in a given year, is a critical indicator of a nation's overall health and well-being. A high IMR reflects gaps in healthcare, nutrition, sanitation, and socioeconomic conditions [1-3].

Understanding infant mortality rate

Infant mortality rate is a crucial public health measure that provides insights into a population's overall health, healthcare quality, and social and economic conditions. It is an indicator of the ability of a society to provide adequate care for its most vulnerable members [4-6]. IMR is often divided into two categories:

Neonatal mortality rate: The number of deaths that occur within the first 28 days of life per 1,000 live births.

Post-neonatal mortality rate: The number of deaths that occur between 29 days and one year of age per 1,000 live births.

The significance of IMR

A high IMR is indicative of several critical concerns, including:

Healthcare quality: IMR is a reflection of the quality and accessibility of healthcare services, including prenatal care, skilled birth attendants, and neonatal care.

Nutrition and hygiene: Infant mortality is closely tied to the mother's nutrition during pregnancy and the infant's nutrition post-birth. Additionally, sanitation and access to clean water are vital in reducing infant mortality.

Socioeconomic status: A lower IMR is often associated with higher socioeconomic status,

ARTICLE HISTORY

Received: 20-Nov-2023, Manuscript No. AJPMPH-23-123265; Editor assigned: 23-Nov-2023, PreQC No. AJPMPH-23-123265 (PQ); Reviewed: 08-Dec-2023, QC No. AJPMPH-23-123265; Revised: 14-Dec-2023, Manuscript No. AJPMPH-23-123265(R); Published: 22-Dec-2023

including access to education and employment opportunities.

Preventable causes: Most infant deaths are caused by preventable factors such as infections, complications during childbirth, and inadequate post-natal care [7-9].

Several factors contribute to high infant mortality rates, including

Lack of access to quality healthcare: Inadequate healthcare infrastructure and limited access to skilled healthcare providers can result in higher IMR.

Maternal health: The health of the mother before and during pregnancy significantly impacts infant mortality. Prenatal care, proper nutrition, and a safe birthing environment are essential.

Infectious diseases: In areas with high IMR, infants are more susceptible to infectious diseases due to poor sanitation and limited access to vaccinations.

Nutrition: Malnutrition in both mothers and infants can lead to low birth weight, prematurity, and other health complications.

Social determinants: Factors such as poverty, lack of education, and limited access to clean water and sanitation services contribute to higher IMR.

Challenges associated with high imr

Healthcare inequality: It highlights disparities in healthcare access and quality within and between countries.

Economic burden: High IMR is associated with economic costs, as a significant proportion of resources is devoted to addressing infant health issues.

Emotional toll: It takes an emotional toll on families and communities, affecting social well-being and quality of life.

Contact: Ana Speranza, E-mail: anasperanza15@gmail.com

Copyrights: © 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution NonCommercial ShareAlike 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/).

Societal development: High IMR can hinder societal development by affecting the health and potential of the next generation.

Approaches to reduce imr: Efforts to reduce infant mortality rates involve a combination of healthcare, socioeconomic, and policy interventions

Improved prenatal care: Providing comprehensive prenatal care to mothers, including nutrition counseling and regular check-ups, can improve birth outcomes.

Access to skilled birth attendants: Ensuring that births are attended by skilled healthcare providers can reduce the risk of complications during childbirth.

Vaccination programs: Immunization against common childhood diseases can significantly reduce infant mortality.

Nutrition initiatives: Promoting breastfeeding, ensuring proper infant nutrition, and addressing malnutrition are key components of reducing IMR.

Access to clean water and sanitation: Improved access to clean water and sanitation facilities reduces the risk of infection and disease.

Education and empowerment: Providing education and economic opportunities for women can lead to better maternal and infant health outcomes.

Community-based interventions: Engaging communities in promoting maternal and infant health can help address local challenges and disparities. Infant mortality rate is a critical indicator of a nation's overall health and well-being. High IMR reflects gaps in healthcare, nutrition, sanitation, and socioeconomic conditions. Addressing infant mortality requires a multifaceted approach that encompasses healthcare improvements, socioeconomic development, and policies that prioritize maternal and infant well-being. Reducing IMR not only saves lives but also contributes to a healthier and more prosperous future for societies.

References

[1] Rajnics P, Templier A, Skalli W, Lavaste F, Illes T. The importance of spinopelvic parameters in patients

with lumbar disc lesions. Int Orthop 2002; 26:104-108.

- [2] de Sousa CS, de Jesus FLA, Machado MB, Ferreira G, Ayres IG, de Aquino LM et al. Lower limb muscle strength in patients with low back pain: a systematic review and meta-analysis. J Musculoskelet Neuronal Interact 2019;19: 69-78.
- [3] Sanjoy SS, Ahsan GU, Nabi H, Joy ZF, Hossain A. Occupational factors and low back pain: a crosssectional study of Bangladeshi female nurses. BMC Res Notes 2017; 10(1):1-6.
- [4] Singh DK, Bailey M, Lee R. Decline in lumbar extensor muscle strength in older adults: correlation with age, gender and spine morphology. BMC musculoskeletal disord 2013; 14:1-6.
- [5] Sions JM, Elliott JM, Pohlig RT, Hicks GE. Trunk muscle characteristics of the multifidi, erector spinae, psoas, and quadratus lumborum in older adults with and without chronic low back pain. J Orthop Sports Phys Ther 2017;47(3):173-179.
- [6] Svensson GL, Lundberg M, Östgaard HC, Wendt GK. High degree of kinesiophobia after lumbar disc herniation surgery: A cross-sectional study of 84 patients. Acta Orthop 2011; 82(6):732-736.
- [7] Tatsumi M, Mkoba EM, Suzuki Y, Kajiwara Y, Zeidan H, Harada K et al. Risk factors of low back pain and the relationship with sagittal vertebral alignment in Tanzania. BMC Musculoskelet Disord 2019; 20(1):1-5.
- [8] van Wilgen CP, Stewart R, Stegeman PP, Coppes M, van Wijhe M. Fear of movement in pre-operative patients with a lumbar stenosis and or herniated disc: Factor structure of the Tampa scale for kinesiophobia. Man Ther 2010:593-598.
- [9] Vlažná D, Krkoška P, Kuhn M, Dosbaba F, Batalik L, Vlčková E et al. Assessment of lumbar extensor muscles in the context of trunk function, a pilot study in healthy individuals. Applied Sci 2021; 11:1-16.